KNIME with Python and R for Machine Learning Training Course
KNIME is an open source data analytical software for integrating machine learning and data mining through data pipelines. With Python and R, users are able to extend KNIME in its capabilities for data analytics and machine learning.
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to program in Python and R for KNIME.
By the end of this training, participants will be able to:
- Plan, build, and deploy machine learning models in KNIME.
- Implement end to end data science projects.
- Make data driven decisions for operations.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Certificate
Course Outline
Introduction
Getting Started with Knime
- What is KNIME?
- KNIME Analytics
- KNIME Server
Machine Learning
- Computational learning theory
- Computer algorithms for computational experience
Preparing the Development Environment
- Installing and configuring KNIME
KNIME Nodes
- Adding nodes
- Accessing and reading data
- Merging, splitting, and filtering data
- Grouping and pivoting data
- Cleaning data
Modeling
- Creating workflows
- Importing data
- Preparing data
- Visualizing data
- Creating a decision tree model
- Working with regression models
- Predicting data
- Comparing and matching data
Learning Techniques
- Working with random forest techniques
- Using polynomial regression
- Assigning classes
- Evaluating models
Summary and Conclusion
Requirements
- Experience with Python
- R experience
Audience
- Data Scientists
Open Training Courses require 5+ participants.
KNIME with Python and R for Machine Learning Training Course - Booking
KNIME with Python and R for Machine Learning Training Course - Enquiry
KNIME with Python and R for Machine Learning - Consultancy Enquiry
Consultancy Enquiry
Testimonials (5)
it was informative and useful
Brenton - Lotterywest
Course - Building Web Applications in R with Shiny
Many examples and exercises related to the topic of the training.
Tomasz - Ministerstwo Zdrowia
Course - Advanced R Programming
Day 1 and Day 2 were really straight forward for me and really enjoyed that experience.
Mareca Sithole - Africa Health Research Institute
Course - R Fundamentals
Very useful in because it helps me understand what we can do with the data in our context. It will also help me
Nicolas NEMORIN - Adecco Groupe France
Course - KNIME Analytics Platform for BI
The pace was just right and the relaxed atmosphere made candidates feel at ease to ask questions.
Rhian Hughes - Public Health Wales NHS Trust
Course - Introduction to Data Visualization with Tidyverse and R
Upcoming Courses
Related Courses
Programming with Big Data in R
21 HoursBig Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
R Fundamentals
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Data Mining with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Forecasting with R
14 HoursThis instructor-led, live training in Japan (online or onsite) is aimed at intermediate-level data analysts and business professionals who wish to perform time series forecasting and automate data analysis workflows using R.
By the end of this training, participants will be able to:
- Understand the fundamentals of forecasting techniques in R.
- Apply exponential smoothing and ARIMA models for time series analysis.
- Utilize the ‘forecast’ package to generate accurate forecasting models.
- Automate forecasting workflows for business and research applications.
KNIME Analytics Platform for BI
21 HoursKNIME Analytics Platform is a leading open source option for data-driven innovation, helping you discover the potential hidden in your data, mine for fresh insights, or predict new futures. With more than 1000 modules, hundreds of ready-to-run examples, a comprehensive range of integrated tools, and the widest choice of advanced algorithms available, KNIME Analytics Platform is the perfect toolbox for any data scientist and business analyst.
This course for KNIME Analytics Platform is an ideal opportunity for beginners, advanced users and KNIME experts to be introduced to KNIME, to learn how to use it more effectively, and how to create clear, comprehensive reports based on KNIME workflows
Data Science with KNIME Analytics Platform
21 HoursKNIME Analytics Platform is a leading open source option for data-driven innovation, helping you discover the potential hidden in your data, mine for fresh insights, or predict new futures. With more than 1000 modules, hundreds of ready-to-run examples, a comprehensive range of integrated tools, and the widest choice of advanced algorithms available, KNIME Analytics Platform is the perfect toolbox for any data scientist and business analyst.
This course for KNIME Analytics Platform is an ideal opportunity for beginners, advanced users and KNIME experts to be introduced to KNIME, to learn how to use it more effectively, and how to create clear, comprehensive reports based on KNIME workflows
This instructor-led, live training (online or onsite) is aimed at data professionals who wish to use KNIME to solve complex business needs.
It is targeted for the audience that doesn't know programming and intends to use cutting edge tools to implement analytics scenarios
By the end of this training, participants will be able to:
- Install and configure KNIME.
- Build Data Science scenarios
- Train, test and validate models
- Implement end to end value chain of data science models
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course or to know more on this program, please contact us to arrange.
Platforma analityczna KNIME - szkolenie kompleksowe
35 HoursThe "Analytics Platform KNIME" training offers a comprehensive overview of this free data analytics platform. The program includes an introduction to data processing and analysis, installation and configuration KNIME, building workflow, methodology for creating business models and data modeling. The course also covers advanced data analysis tools, workflow import and export, tool integration, ETL processes, data mining, visualization, extensions and integrations with tools such as R, Java, Python, Gephi, Neo4j. The conclusion includes an overview of reporting, integration with BIRT and KNIME WebPortal.
Marketing Analytics using R
21 HoursAudience
Business owners (marketing managers, product managers, customer base managers) and their teams; customer insights professionals.
Overview
The course follows the customer life cycle from acquiring new customers, managing the existing customers for profitability, retaining good customers, and finally understanding which customers are leaving us and why. We will be working with real (if anonymous) data from a variety of industries including telecommunications, insurance, media, and high tech.
Format
Instructor-led training over the course of five half-day sessions with in-class exercises as well as homework. It can be delivered as a classroom or distance (online) course.
R for Data Analysis and Research
7 HoursAudience
- managers
- developers
- scientists
- students
Format of the course
on-line instruction and discussion OR face-to-face workshops
Introduction to R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
This course covers the manipulation of objects in R including reading data, accessing R packages, writing R functions, and making informative graphs. It includes analyzing data using common statistical models. The course teaches how to use the R software (https://www.r-project.org) both on a command line and in a graphical user interface (GUI).
R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Neural Network in R
14 HoursThis course is an introduction to applying neural networks in real world problems using R-project software.
Advanced R Programming
7 HoursThis course is for data scientists and statisticians that already have basic R & C++ coding skills and R code and need advanced R coding skills.
The purpose is to give a practical advanced R programming course to participants interested in applying the methods at work.
Sector specific examples are used to make the training relevant to the audience
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Building Web Applications in R with Shiny
7 HoursDescription:
This is a course designed to teach R users how to create web apps without needing to learn cross-browser HTML, Javascript, and CSS.
Objective:
Covers the basics of how Shiny apps work.
Covers all commonly used input/output/rendering/paneling functions from the Shiny library.