TensorFlowのトレーニングコース

TensorFlowのトレーニングコース

ローカルのインストラクター主導のライブTensorFlowトレーニングコースでは、インタラクティブなディスカッションと実践的な実践を通じて、 TensorFlowシステムを使用して機械学習の研究を促進し、研究プロトタイプから生産システムへの移行を迅速かつ容易にする方法を実演します。 TensorFlowトレーニングは、「オンサイトライブトレーニング」または「リモートライブトレーニング」として利用できます。オンサイトのライブトレーニングは、お客様の施設でローカルに実施できます。 日本またはのNobleProg企業トレーニングセンター日本 。リモートライブトレーニングは、インタラクティブなリモートデスクトップ経由で実行されます。 NobleProg-ローカルトレーニングプロバイダー

Machine Translated

お客様の声

★★★★★
★★★★★

TensorFlowコース概要

コース名
期間
概要
コース名
期間
概要
28 時間
概要
は、AI と it & #39 のアプリケーションを紹介する4日間のコースです。このコースの完了時に AI プロジェクトを引き受けるための追加の日を持つオプションがあります。
21 時間
概要
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
35 時間
概要
TensorFlow™ is an open source software library for numerical computation using data flow graphs.

SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.

Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).

Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.

Audience

This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.

After completing this course, delegates will:

- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
7 時間
概要
は、テンソル処理ユニット (TPU) は、Google が数年間内部的に使用しているアーキテクチャであり、ちょうど今、一般大衆が使用できるようになっている。これには、適切なレベルの精度を返すために、合理化された行列乗算、16ビットではなく8ビット整数など、ニューラルネットワークで使用するための最適化がいくつか含まれています。

このインストラクター主導の, ライブトレーニング, 参加者は、独自の AI アプリケーションのパフォーマンスを最大化するために TPU のプロセッサの技術革新を活用する方法を学びます.

は、トレーニングの終了により、参加者ができるようになります:

- は大量のデータを
に様々な種類のニューラルネットワークを訓練する - は TPUs を使用して、最大2桁の次数で推論プロセスを高速化し
- は、画像検索、クラウドビジョンや写真などの集中的なアプリケーションを処理するために TPUs を利用して

観客

- 開発者
- 研究者
- エンジニア
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
21 時間
概要
TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 時間
概要
このコースでは、具体的な例を用いて、画像認識を目的としたTensor Flowの適用について説明します。

観客

このコースは、画像認識の目的でTensorFlowを利用しようとしているエンジニアを対象としています。

このコースを修了すると、参加者は次のことができるようになります。

- TensorFlowの構造と展開メカニズムを理解する
- インストール/本番環境/アーキテクチャのタスクと設定を実行する
- コード品質の評価、デバッグの実行、監視
- モデルのトレーニング、グラフの作成、伐採などの高度な生産を実装する
21 時間
概要
TensorFlowは、 Go ogleのDeep Learning用オープンソースソフトウェアライブラリの第2世代APIです。このシステムは、機械学習における研究を容易にし、研究プロトタイプから生産システムへの移行を迅速かつ容易にするように設計されています。

観客

このコースは、 Deep LearningプロジェクトにTensorFlowを使用しようとしているエンジニアを対象としています。

このコースを修了すると、参加者は以下のことを行います。

- TensorFlowの構造と展開メカニズムを理解する
- インストール/実稼働環境/アーキテクチャーのタスクおよび構成を実行できる
- コード品質の評価、デバッグの実行、監視が可能
- モデルのトレーニング、グラフの作成、伐採などの高度な生産を実装できる
7 時間
概要
TensorFlow サービングは機械学習 (ML) モデルを生産に提供するためのシステムです。

このインストラクター主導のライブトレーニングでは、TensorFlow サービスを構成して使用して、ML モデルを運用環境で展開および管理する方法について説明します。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- 列車、輸出、様々な TensorFlow モデルを提供
- は、単一のアーキテクチャと一連の api を使用して、テストおよび配備アルゴリズムを
- は TensorFlow モデルを越えて他のタイプのモデルを提供するためにサービング TensorFlow を拡張する

観客

- 開発者
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
21 時間
概要
TensorFlow Lite for Microcontrollers is a port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with limited memory.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 時間
概要
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
28 時間
概要
NLP のための

深い学習は、マシンが複雑な言語処理に簡単に学ぶことができます。現在可能なタスクの中には、写真の言語の翻訳とキャプションの生成があります。DL (ディープラーニング) は ML (機械学習) のサブセットです。Python は、NLP のための深い学習のためのライブラリが含まれている一般的なプログラミング言語です。

このインストラクター主導の、ライブトレーニングでは、参加者は、画像のセットを 処理し、キャプションを生成するアプリケーションを作成するように NLP (自然言語処理) の Python ライブラリを使用することを学びます。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

Python ライブラリを使用した NLP のための - デザインと コード DL
- は、画像の大幅に膨大なコレクションを読み取り、キーワードを生成する Python コードを作成し
- は が検出されたキーワードからキャプションを生成する Python コードを作成し

観客

- プログラマー 言語学に興味を持って
NLP の理解を求める - プログラマ (自然言語処理)
コース の

形式

- 部講義、パート討論、演習と重い実地練習
21 時間
概要
TensorFlow Lite is an open source deep learning framework for executing models on mobile and embedded devices with limited compute and memory resources.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 時間
概要
TensorFlow.js is a JavaScript framework for machine learning. TensorFlow.js enables users to build and train machine learning models directly in JavaScript.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 時間
概要
TensorFlowは、ディープラーニング、数値計算、大規模機械学習のためにGo ogleが開発した人気の機械学習ライブラリです。 TensorFlow 2019年1月にリリース2.0は、の最新バージョンですTensorFlowと熱心実行、互換性とAPIの一貫性の改善が含まれています。

このインストラクター主導のライブトレーニング(オンサイトまたはリモート)は、Tensorflow 2.0を使用して予測子、分類子、生成モデル、ニューラルネットワークなどを構築したい開発者およびデータサイエンティストを対象としています。

このトレーニングの終わりまでに、参加者は次のことができるようになります。

- TensorFlow 2.0をインストールして構成します。
- TensorFlow 2.0の以前のバージョンに対する利点を理解します。
- 深層学習モデルを構築します。
- 高度な画像分類器を実装します。
- ディープラーニングモデルをクラウド、モバイル、IoTデバイスに展開します。

コースの形式

- インタラクティブな講義とディスカッション。
- たくさんの練習と練習。
- ライブラボ環境での実践的な実装。

コースのカスタマイズオプション

- このコースのカスタマイズされたトレーニングをリクエストするには、お問い合わせください。
- TensorFlow詳細については、https: TensorFlowをご覧ください。
28 時間
概要
このコースでは、ニューラルネットワークの知識と、一般的に機械学習アルゴリズム、ディープラーニング(アルゴリズムとアプリケーション)の知識が得られます。

この研修は、基礎の詳細焦点であるが、適切な技術を選択するのに役立ちます: TensorFlow 、 Caffe 、テアーノ、DeepDrive、 Keras 、などの例がで作られていTensorFlow 。
14 時間
概要
TensorFlow is an open source machine learning library. TensorFlow provides users the ability to use and create artificial intelligence for detecting and predicting fraud.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow to analyze potential fraud data.

By the end of this training, participants will be able to:

- Create a fraud detection model in Python and TensorFlow.
- Build linear regressions and linear regression models to predict fraud.
- Develop an end-to-end AI application for analyzing fraud data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 時間
概要
埋め込みプロジェクターは、機械学習システムを訓練するために使用されるデータを視覚化するためのオープンソースの web アプリケーションです。Google によって作成された、それは TensorFlow の一部です。

このインストラクター主導のライブトレーニングでは、プロジェクターの埋め込みの概念を紹介し、デモプロジェクトのセットアップを通じて参加者をウォークします。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- 機械学習モデルによるデータの解釈方法を探る
- は、機械学習アルゴリズムがそれをどのように解釈するかを理解するために、データの3d と2d ビューをナビゲートし
- は、込みの背後にある概念と、画像、単語、数字の数学的ベクトルを表す役割を理解しています。
- 特定の埋め込みのプロパティを調べて、モデルの動作を理解する
- は、このような音楽愛好家のための曲の推薦システムを構築する現実世界のユースケースに埋め込みプロジェクトを適用する

観客

- 開発者
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
21 時間
概要
観客

このコースは、コンピューターイメージの分析に利用可能なツール(主にオープンソース)を利用することに興味があるDeep Learning研究者やエンジニアに適しています。

このコースは実例を提供します。
35 時間
概要
このコースは、ニューラルネットワーク、および一般的に機械学習アルゴリズム、ディープラーニング(アルゴリズムとアプリケーション)の概念的な知識を提供することから始まります。

パート1(40%)このトレーニングのは基本に、より焦点となっていますが、適切な技術を選択するのに役立ちます: TensorFlow 、 Caffe 、Theano、DeepDrive、 Kerasなど

このトレーニングのパート2(20%)では、ディープラーニングモデルを簡単に作成できるPythonライブラリであるTheanoを紹介しています。

トレーニングのパート3(40%)は、Tensorflow- Go ogleのDeep Learning用オープンソースソフトウェアライブラリの第2世代APIに広く基づいています。例とハンドソンはすべてTensorFlowで作成されTensorFlow 。

聴衆

このコースは、 Deep LearningプロジェクトにTensorFlowを使用しTensorFlowエンジニアを対象としています。

このコースを修了すると、参加者は次のことを行います。

-

ディープニューラルネットワーク(DNN)、CNN、RNNについて十分に理解している

-

TensorFlowの構造と展開メカニズムを理解する

-

インストール/実稼働環境/アーキテクチャのタスクと構成を実行できる

-

コード品質の評価、デバッグの実行、監視ができる

-

トレーニングモデル、グラフ作成、ロギングなどの高度なプロダクションを実装できる
週末TensorFlowコース, 夜のTensorFlowトレーニング, TensorFlowブートキャンプ, TensorFlow インストラクターよる, 週末TensorFlowトレーニング, 夜のTensorFlowコース, TensorFlow指導, TensorFlowインストラクター, TensorFlowレーナー, TensorFlowレーナーコース, TensorFlowクラス, TensorFlowオンサイト, TensorFlowプライベートコース, TensorFlow1対1のトレーニング

コースプロモーション

一部のお客様

is growing fast!

We are looking to expand our presence in Japan!

As a Business Development Manager you will:

  • expand business in Japan
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

This site in other countries/regions