Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
コース概要
Introduction to Edge AI and Model Optimization
- Understanding edge computing and AI workloads
- Trade-offs: performance vs. resource constraints
- Overview of model optimization strategies
Model Selection and Pre-training
- Choosing lightweight models (e.g., MobileNet, TinyML, SqueezeNet)
- Understanding model architectures suitable for edge devices
- Using pre-trained models as a base
Fine-Tuning and Transfer Learning
- Principles of transfer learning
- Adapting models to custom datasets
- Practical fine-tuning workflows
Model Quantization
- Post-training quantization techniques
- Quantization-aware training
- Evaluation and trade-offs
Model Pruning and Compression
- Pruning strategies (structured vs. unstructured)
- Compression and weight sharing
- Benchmarking compressed models
Deployment Frameworks and Tools
- TensorFlow Lite, PyTorch Mobile, ONNX
- Edge hardware compatibility and runtime environments
- Toolchains for cross-platform deployment
Hands-On Deployment
- Deploying to Raspberry Pi, Jetson Nano, and mobile devices
- Profiling and benchmarking
- Troubleshooting deployment issues
Summary and Next Steps
要求
- An understanding of machine learning fundamentals
- Experience with Python and deep learning frameworks
- Familiarity with embedded systems or edge device constraints
Audience
- Embedded AI developers
- Edge computing specialists
- Machine learning engineers focusing on edge deployment
14 時間