人工知能(AI)のトレーニングコース

人工知能(AI)のトレーニングコース

現地のインストラクターによるライブAI(人工知能)トレーニングコースでは、実世界の問題を解決するためのAIソリューションの実装方法を実践的に実践しています。 AIトレーニングは、「オンサイトライブトレーニング」または「リモートライブトレーニング」として利用できます。現場での現場でのトレーニングは、 日本 NobleProgの企業研修センターで日本 。リモートライブトレーニングは、インタラクティブなリモートデスクトップを介して実行されます。 NobleProg - あなたのローカルトレーニングプロバイダ。

Machine Translated

お客様の声

★★★★★
★★★★★

Artificial Intelligenceコース概要

コース名
期間
概要
コース名
期間
概要
14 時間
概要
このコースでは、 Automotive産業のAI( Machine LearningとDeep Learning重視)について説明します。簡単なオートメーション、画像認識から自律的な意思決定まで、自動車のさまざまな状況で(潜在的に)使用できるテクノロジを判断するのに役立ちます。
21 時間
概要
このコースは書かれた英語のテキストから意味を抽出することに興味がある人々のために設計されています、知識は他の人間の言語にも同様に適用されることができます。

このコースでは、ブログ記事、ツイートなど、人間が書いたテキストをどのように利用するかについて説明します。

たとえば、アナリストは、広範囲のデータソースに基づいて自動的に結論に達するアルゴリズムを設定できます。
21 時間
概要
PredictionIOは、最先端のオープンソーススタックの上に構築されたオープンソースのMachine Learning Serverです。

観客

このコースは、あらゆる機械学習タスク用の予測エンジンを作成したい開発者およびデータ科学者を対象としています。
14 時間
概要
パターンマッチングは、画像内の指定されたパターンを見つけるために使用される手法です。これを使用して、取り込まれた画像内の指定された特性、たとえば工場ラインの不良品に表示されるラベル、またはコンポーネントの指定された寸法などを判断できます。 「 Pattern Recognition 」(関連するサンプルのより大きなコレクションに基づいて一般的なパターンを認識する)とは異なります。これは、探しているものを明確に示し、期待されるパターンが存在するかどうかを判断するためです。

コースの形式

- このコースでは、 Machine Visionに適用されるパターンマッチングの分野で使用されるアプローチ、テクノロジ、およびアルゴリズムを紹介します。
21 時間
概要
PaddlePaddle (パラレル分散ディープラーニング) は、Baidu によって開発されたスケーラブルなディープラーニングプラットフォームです。

このインストラクター主導のライブトレーニングでは、PaddlePaddle を使用して、製品およびサービスアプリケーションで深い学習を可能にする方法について説明します。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- の設定と構成 PaddlePaddle
- は、画像認識とオブジェクト検出のための畳み込みニューラルネットワーク (CNN) を設定する
- は、感情解析のためのリカレントニューラルネットワーク (RNN) を設定する
- はユーザーが答えを見つけるのを助けるために推薦システムの深い学習をセットアップした
- は、クリックスルー率 (CTR) を予測し、大規模な画像セットを分類し、光学式文字認識 (OCR) を実行し、検索をランク付けし、コンピュータウイルスを検出し、勧告システムを実装します。

観客

- 開発者
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
21 時間
概要
このコースはOptaPlannerを教えるための実践的なアプローチをOptaPlannerます。このツールの基本機能を実行するために必要なツールを参加者に提供します。
14 時間
概要
In this instructor-led, live training, we go over the principles of neural networks and use OpenNN to implement a sample application.

Format of the course

- Lecture and discussion coupled with hands-on exercises.
7 時間
概要
この講師主導のライブトレーニングでは、参加者はOpenNMT設定方法と使用方法を学び、さまざまなサンプルデータセットの翻訳を実行します。コースは、機械翻訳に適用されるニューラルネットワークの概要から始まります。参加者は、学んだ概念についての理解を示し、講師からのフィードバックを得るためにコース全体を通して実習を行います。

このトレーニングの終わりまでに、参加者はライブのOpenNMTソリューションを実装するために必要な知識と実践を得ることがOpenNMTます。

原文と訳文のサンプルは、視聴者の要求に応じて事前に準備されます。

コースの形式

- パートレクチャー、パートディスカッション、ヘビー実習
14 時間
概要
Apache OpenNLP ライブラリは、自然言語テキストを処理するための機械学習ベースのツールキットです。言語の検出、トークナイゼーション、文のセグメンテーション、品詞のタグ付け、名前付きエンティティの抽出、チャンク、解析、おけるの解決など、最も一般的な NLP タスクをサポートしています。

このインストラクター主導のライブトレーニングでは、OpenNLP を使用してテキストベースのデータを処理するモデルを作成する方法について説明します。サンプルのトレーニングデータと同様にカスタマイズされたデータセットは、演習の演習の基礎として使用されます。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- OpenNLP
のインストールと設定 - は、既存のモデルをダウンロードするだけでなく、独自の
を作成する - は、サンプルデータの様々なセットのモデルを訓練する
既存の Java アプリケーションと OpenNLP を統合する -

観客

- 開発者
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
14 時間
概要
OpenFace は、Python とトーチベースのオープンソース、Google & #39 に基づくリアルタイムの顔認識ソフトウェアです。

このインストラクター主導のライブトレーニングでは、OpenFace & #39 のコンポーネントを使用して、サンプルの顔認識アプリケーションを作成して展開する方法を受講者が学習します。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- は、dlib、OpenVC、トーチ、および nn4 を含む OpenFace & #39 のコンポーネントを使用して、顔検出、アライメント、および変換
を実装します。 - は、監視、身元確認、バーチャルリアリティ、ゲーム、リピート顧客の特定など、実世界のアプリケーションに OpenFace を適用します

観客

- 開発者
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
28 時間
概要
OpenCV (Open Source Computer Visionライブラリ:http://opencv.org)は、数百ものComputer Visionアルゴリズムを含む、オープンソースのBSDライセンスのライブラリです。

観客

このコースは、コンピュータビジョンプロジェクトにOpenCVを利用しようとしているエンジニアや建築家を対象としています。
21 時間
概要
コースは、商業 MATLAB のパッケージに代替プログラムを知っていただきたい人のために捧げられています。3日間のトレーニングは、環境を移動し、データ解析とエンジニアリング計算のためのオクターブパッケージを実行するための包括的な情報を提供しています。訓練の受け手は初心者であるが、またプログラムを知って、彼らの知識を体系化し、彼らの技術を改善したいと思う人。他のプログラミング言語の知識は必須ではありませんが、学習者と #39 を非常に容易にし、知識を習得します。コースでは、多くの実用的な例では、プログラムを使用する方法が表示されます。
14 時間
概要
このクラスルームベースのトレーニングセッションには、関連するニューラルおよびディープネットワークライブラリを使用したプレゼンテーション、コンピュータベースの例、およびケーススタディ演習が含まれます。
21 時間
概要
この教室ベースのトレーニングセッションは、ビジネスで AI とロボティクスのアプリケーションと一緒に NLP のテクニックを探求します。デリゲートは、Python

を使用して コンピュータベースの例とケーススタディの解決演習を実施します
21 時間
概要
非構造化データは、すべてのデータの 90% 以上を占めると推定されており、その大部分はテキストの形式になっています。ブログの投稿、ツイート、ソーシャルメディア、その他のデジタルパブリケーションは、この増大するデータの本体に継続的に追加されます。

はこのインストラクター主導のライブコースであり、このデータから洞察と意味を抽出することを中心にしています。R 言語と自然言語処理 (NLP) ライブラリを利用して、私たちは、コンピュータサイエンス、人工知能、計算言語学の概念と技法を組み合わせて、テキストデータの背後にある意味をアルゴリズム的に理解します。データサンプルは、顧客の要件ごとにさまざまな言語で使用できます。

このトレーニングの最後までに

は、異なるソースからデータセット (大小) を準備し、その意義を分析して報告するための適切なアルゴリズムを適用することができます。

コースの形式

- パートレクチャー、パートディスカッション、ヘビーハンズオン練習、
理解を測るための時折のテスト
21 時間
概要
自然言語生成 (NLG) は、コンピュータによる自然言語のテキストまたは音声の生産を指します。

このインストラクター主導のライブトレーニングでは、Python を使用して、独自の NLG システムをゼロから構築することによって、高品質な自然言語のテキストを生成する方法について説明します。ケーススタディも検討され、関連する概念は、コンテンツを生成するためのライブラボプロジェクトに適用されます。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- は、NLG を使用して、ジャーナリズム、不動産、気象、スポーツレポートなど、さまざまな業種のコンテンツを自動的に生成し
- ソースコンテンツの選択と整理、文章のプランニング、オリジナルコンテンツの自動生成のためのシステムの準備
- は NLG のパイプラインを理解し、各段階で適切な技術を適用する
- 自然言語生成 (NLG) システムのアーキテクチャを理解する
- 解析および順序付けに最適なアルゴリズムとモデルを実装する
- は、一般に利用可能なデータソースからデータをプルし、生成されたテキストの材料として使用するキュレーションデータベース
- は、コンピュータ生成、自動化されたコンテンツの作成とマニュアルと労力を書くプロセスを置き換える

観客

- 開発者
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
21 時間
概要
このインストラクター主導のライブトレーニングでは、画像、音楽、テキスト、財務データを含む一連のデモアプリケーションを構築する際に、Python で最も関連性の高い最先端の機械学習技術を学びます。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- は複雑な問題を解くための機械学習アルゴリズムと技法を実装する
- は、画像、音楽、テキスト、および財務データを含むアプリケーションに深い学習と半教師付き学習を適用する
- は Python アルゴリズムを最大のポテンシャル
にプッシュする - は NumPy やテアノなどのライブラリーやパッケージを使用して

観客

- 開発者
- アナリスト
- データサイエンティスト
コース の

形式

- 部講義、パート討論、演習と重い実地練習
28 時間
概要
このコースでは、ニューラルネットワークの知識と、一般的に機械学習アルゴリズム、ディープラーニング(アルゴリズムとアプリケーション)の知識が得られます。

この研修は、基礎の詳細焦点であるが、適切な技術を選択するのに役立ちます: TensorFlow 、 Caffe 、テアーノ、DeepDrive、 Keras 、などの例がで作られていTensorFlow 。
7 時間
概要
トレーニングは、ニューラルネットワークとその応用の基礎を学びたい人々を対象としています。
21 時間
概要
この教室ベースのトレーニングセッションでは、(推奨される) Python使った機械学習ツールを探ります。参加者は、コンピュータを使った例題とケーススタディ演習を行います。
21 時間
概要
このコースでは、ロボット工学アプリケーションにおける機械学習方法を紹介します。

これは、パターン認識のコンテキストにおける既存の方法、動機、および主なアイデアの概要です。

短い理論的背景の後、参加者はオープンソース(通常R)または他の一般的なソフトウェアを使用して簡単な演習を行います。
21 時間
概要
このコースの目的は、機械学習の方法を実際に適用するための一般的な習熟度を提供することです。Python プログラミング言語とそのさまざまなライブラリを使用することにより、数多くの実用的な例に基づいて、このコースでは、機械学習の最も重要なビルディングブロックの使用方法、データモデリングの決定方法、アルゴリズムを出力し、結果を検証します。

私たちの目標は、機械学習ツールボックスから最も基本的なツールを理解して使用するためのスキルを自信を持って提供し、データサイエンスアプリケーションの共通の落とし穴を回避することです。
14 時間
概要
この教室ベースのトレーニングセッションは、コンピュータベースの例と関連するプログラムを使用して、ケーススタディの演習を解決すると、機械学習技術を探求する languauge
14 時間
概要
このインストラクター主導のライブトレーニングでは、ios モバイルアプリの作成と展開をステップとして、ios マシンラーニング (ML) テクノロジスタックの使用方法について説明します。

このトレーニングの終わりまでに、参加者は次のことができるようになります:

- 画像処理、テキスト解析、音声認識が可能なモバイルアプリを作成する
- は、ios アプリへの統合のために事前に訓練された ml モデルにアクセス
- カスタム ml モデルを作成する
- ios アプリに Siri 音声サポートを追加
- 理解また、coreML、ビジョン、CoreGraphics、GamePlayKit
などのフレームワークを使用して、Python、- 、Keras、コーヒー、sci キットの学習、Tensorflow、アナコンダ、スパイダー libsvm

観客の

のような言語やツールを使用

- 開発者

形式のコース

- パートの講義、一部の議論、演習と重い実践的な実践
7 時間
概要
このトレーニングコースは、実用的なアプリケーションで基本的なMachine Learning技術を適用したい人々のためのものです。

観客

機械学習にある程度精通しており、Rのプログラミング方法を知っているデータ科学者および統計学者。このコースの重点は、データ/モデルの作成、実行、事後分析および視覚化の実用面にある。目的は、職場での方法の適用に興味がある参加者に機械学習の実践的な紹介をすることです

分野別の例は、研修を視聴者に関連させるために使用されます。
14 時間
概要
このコースの目的は、 Machine Learning方法を実際に適用するための基本的な能力を提供することです。 Rプログラミングプラットフォームとそのさまざまなライブラリを使用し、多数の実用的な例に基づいて、このコースでは、 Machine Learning最も重要な構成要素の使用方法、データモデリングの決定方法、アルゴリズムの出力の解釈方法、結果を検証します。

私たちの目標は、 Machine Learningツールボックスの最も基本的なツールを自信を持って理解して使用するスキルを提供し、 Data Scienceのアプリケーションの一般的な落とし穴を回避することです。
14 時間
概要
このコースの目的は、 Machine Learning方法を実際に適用するための基本的な能力を提供することです。 Pythonプログラミング言語とそのさまざまなライブラリを使用し、多数の実用的な例に基づいて、このコースでは、 Machine Learning最も重要な構成要素の使用方法、データモデリングの決定方法、アルゴリズムの出力の解釈方法、結果を検証します。

私たちの目標は、 Machine Learningツールボックスの最も基本的なツールを自信を持って理解して使用するスキルを提供し、 Data Scienceのアプリケーションの一般的な落とし穴を回避することです。
14 時間
概要
このコースの目的は、 Machine Learning方法を実際に適用するための基本的な能力を提供することです。このコースでは、 Scalaプログラミング言語とそのさまざまなライブラリを使用し、多数の実用的な例に基づいて、 Machine Learning最も重要な構成要素の使用方法、データモデリングの決定方法、アルゴリズムの出力の解釈方法、結果を検証します。

私たちの目標は、 Machine Learningツールボックスの最も基本的なツールを自信を持って理解して使用するスキルを提供し、 Data Scienceのアプリケーションの一般的な落とし穴を回避することです。
28 時間
概要
機械学習は、コンピュータが明示的にプログラムされていなくても学習することができる人工知能の一分野です。 Rは金融業界で人気のあるプログラミング言語です。これは、コアトレーディングプログラムからリスク管理システムに至るまでの金融アプリケーションで使用されています。

この講師主導のライブトレーニングでは、参加者は金融業界の現実的な問題を解決するための機械学習技術とツールを適用する方法を学びます。プログラミング言語としてRが使用されます。

参加者は最初に主要な原則を学び、次に自分の機械学習モデルを構築し、それを使っていくつかのチームプロジェクトを完成させることによって自分の知識を実践に移します。

このトレーニングの終わりまでに、参加者は次のことができるようになります。

- 機械学習の基本概念を理解する
- 金融における機械学習の応用と使い方を学ぶ
- Rによる機械学習を使用して独自のアルゴリズム取引戦略を開発する

観客

- 開発者
- データ科学者

コースの形式

- パートレクチャー、パートディスカッション、エクササイズ、そして激しい実習
21 時間
概要
機械学習は、コンピュータが明示的にプログラムされていなくても学習することができる人工知能の一分野です。 Pythonはその明確な構文と読みやすさで有名なプログラミング言語です。それは機械学習アプリケーションを開発するためのよくテストされたライブラリとテクニックの優れたコレクションを提供します。

この講師主導のライブトレーニングでは、参加者は金融業界の現実的な問題を解決するための機械学習技術とツールを適用する方法を学びます。

参加者は最初に主要な原則を学び、次に自分の機械学習モデルを構築し、それを使っていくつかのチームプロジェクトを完成させることによって自分の知識を実践に移します。

このトレーニングの終わりまでに、参加者は次のことができるようになります。

- 機械学習の基本概念を理解する
- 金融における機械学習の応用と使い方を学ぶ
- Python機械学習を使用して独自のアルゴリズム取引戦略を開発する

観客

- 開発者
- データ科学者

コースの形式

- パートレクチャー、パートディスカッション、エクササイズ、そして激しい実習
週末AIコース, 夜のArtificial Intelligenceトレーニング, AIブートキャンプ, AI インストラクターよる, 週末AIトレーニング, 夜のArtificial Intelligenceコース, 人工知能(AI)指導, AI (Artificial Intelligence)インストラクター, Artificial Intelligenceレーナー, 人工知能(AI)レーナーコース, AI (Artificial Intelligence)クラス, AI (Artificial Intelligence)オンサイト, AI (Artificial Intelligence)プライベートコース, AI1対1のトレーニング

コースプロモーション

一部のお客様

is growing fast!

We are looking to expand our presence in Japan!

As a Business Development Manager you will:

  • expand business in Japan
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!