お問い合わせを送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
予約を送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
コース概要
Introduction to Ollama for LLM Deployment
- Overview of Ollama’s capabilities
- Advantages of local AI model deployment
- Comparison with cloud-based AI hosting solutions
Setting Up the Deployment Environment
- Installing Ollama and required dependencies
- Configuring hardware and GPU acceleration
- Dockerizing Ollama for scalable deployments
Deploying LLMs with Ollama
- Loading and managing AI models
- Deploying Llama 3, DeepSeek, Mistral, and other models
- Creating APIs and endpoints for AI model access
Optimizing LLM Performance
- Fine-tuning models for efficiency
- Reducing latency and improving response times
- Managing memory and resource allocation
Integrating Ollama into AI Workflows
- Connecting Ollama to applications and services
- Automating AI-driven processes
- Using Ollama in edge computing environments
Monitoring and Maintenance
- Tracking performance and debugging issues
- Updating and managing AI models
- Ensuring security and compliance in AI deployments
Scaling AI Model Deployments
- Best practices for handling high workloads
- Scaling Ollama for enterprise use cases
- Future advancements in local AI model deployment
Summary and Next Steps
要求
- Basic experience with machine learning and AI models
- Familiarity with command-line interfaces and scripting
- Understanding of deployment environments (local, edge, cloud)
Audience
- AI engineers optimizing local and cloud-based AI deployments
- ML practitioners deploying and fine-tuning LLMs
- DevOps specialists managing AI model integration
14 時間