お問い合わせを送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
予約を送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
コース概要
Introduction
- Overview of RapidMiner Studio
- Orientation to RapidMiner UI and features
CRISP-DM Methodology in RapidMiner
- Understanding CRISP-DM framework
- Application in estimation and projection of values
Data Understanding and Preparation
- Data import and exploration
- Preprocessing and cleaning techniques
- Advanced data transformation methods
Data Modeling with RapidMiner
- Introduction to data modeling
- Selection and application of machine learning algorithms
- Supervised learning algorithms
- Unsupervised learning algorithms
Model Evaluation and Deployment
- Techniques for model evaluation
- Strategies for model deployment
- Model realignment and optimization
Time Series Analysis and Forecasting
- Fundamentals of time series analysis
- Application of moving average models
- Time series preprocessing and data aggregation
Advanced Time Series Techniques
- Decomposition analysis
- Projection with time windows
- Projection with feature generation
ARIMA Modeling
- Understanding ARIMA models
- Practical application in RapidMiner
Summary and Next Steps
要求
- Basic understanding of data analysis and machine learning concepts
Audience
- Data Analysts
- Business Analysts
- Data Scientists
14 時間