お問い合わせを送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
予約を送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
コース概要
Introduction to TinyML
- What is TinyML?
- The significance of machine learning on microcontrollers
- Comparison between traditional AI and TinyML
- Overview of hardware and software requirements
Setting Up the TinyML Environment
- Installing Arduino IDE and setting up the development environment
- Introduction to TensorFlow Lite and Edge Impulse
- Flashing and configuring microcontrollers for TinyML applications
Building and Deploying TinyML Models
- Understanding the TinyML workflow
- Training a simple machine learning model for microcontrollers
- Converting AI models to TensorFlow Lite format
- Deploying models onto hardware devices
Optimizing TinyML for Edge Devices
- Reducing memory and computational footprint
- Techniques for quantization and model compression
- Benchmarking TinyML model performance
TinyML Applications and Use Cases
- Gesture recognition using accelerometer data
- Audio classification and keyword spotting
- Anomaly detection for predictive maintenance
TinyML Challenges and Future Trends
- Hardware limitations and optimization strategies
- Security and privacy concerns in TinyML
- Future advancements and research in TinyML
Summary and Next Steps
要求
- Basic programming knowledge (Python or C/C++)
- Familiarity with machine learning concepts (recommended but not required)
- Understanding of embedded systems (optional but helpful)
Audience
- Engineers
- Data scientists
- AI enthusiasts
14 時間