お問い合わせを送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
予約を送信いただきありがとうございます!当社のスタッフがすぐにご連絡いたします。
コース概要
Introduction to TinyML
- Understanding TinyML constraints and capabilities
- Review of common microcontroller platforms
- Comparing Raspberry Pi vs Arduino vs other boards
Hardware Setup and Configuration
- Preparing Raspberry Pi OS
- Configuring Arduino boards
- Connecting sensors and peripherals
Data Collection Techniques
- Capturing sensor data
- Handling audio, motion, and environmental data
- Creating labeled datasets
Model Development for Edge Devices
- Selecting suitable model architectures
- Training TinyML models with TensorFlow Lite
- Evaluating performance for embedded use
Model Optimization and Conversion
- Quantization strategies
- Converting models for microcontroller deployment
- Memory and computational optimization
Deployment on Raspberry Pi
- Running TensorFlow Lite inference
- Integrating model output into applications
- Troubleshooting performance issues
Deployment on Arduino
- Using the Arduino TensorFlow Lite Micro library
- Flashing models onto microcontrollers
- Verifying accuracy and execution behavior
Building Complete TinyML Applications
- Designing holistic embedded AI workflows
- Implementing interactive, real-world prototypes
- Testing and refining project functionality
Summary and Next Steps
要求
- An understanding of basic programming concepts
- Experience with microcontroller usage
- Familiarity with Python or C/C++
Audience
- Makers
- Hobbyists
- Embedded AI developers
21 時間